Technik > Tech-Talk Design & Konzepte
Müller Classic: Die Baubeschreibung
mac-alex_2003:
Test des Netzteils unter Last
Ein Test der Vorstufen-Heizung unter Last ergab:
Spannung AC: 6,28V
Spannung DC: 6,43V
Beide Spannungen sind somit im Rahmen.
Einbau des Preampboards
Beim Einbau des Preamps ist mir aufgefallen, dass ich eine Leitung zum Runterziehen des AQYs mittels der Diode an den falschen Pin des Vorwiderstandes von Rel6 gelegt habe. Im enstprechenden Photo sieht man die richtige Verlegung.
Am einfachsten ist der Einbau, wenn man das Board schräg in den Amp legt und mit einem Klebeband fixiert. So kommt man am besten an die Unterseite des Boards dran, v.a. da ich beim Vorbereiten des Boards eine Anodenleitung vergessen habe anzulöten.
Der zweite Schritt ist die Verbindung mit dem Booster-Board und der Anschluss der Versorgungsleitungen für die Schalterei am ersten Sockel. Die Leitungen sollten dabei so kurz wie möglich gehalten werden, da hier Signalleitungen verlegt sind. Diese sind allerdings nach den Koppel-Cs und sollten daher nicht mehr so einstreuempfindlich sein.
Als nächstes werden die beiden Schalter für die Voicings (da gibts leider kein Photo davon) und die beiden Becherelkos verdrahtet. Auch hier sollte wieder auf eine möglichst kurze Leitungslänge geachtet werden.
Die beiden Leitungen für die Schalterei die auf der Netzteilseite unter dem Preampboard rauskommen legt man am Schluss am besten zwischen den Abstandsbolzen durch zur Switches-Buchse, an der sie später verlötet werden.
Danach kann das Board festgeschraubt werden und die restliche Verdrahtung beginnen.
Viele Grüße,
Marc
Bitte stellt Fragen und Antworten in "Müller Classic: Das Konzept"
mac-alex_2003:
Die beiden ersten Bilder im Anhang zeigen die fertig eingebauten Boards mit den noch offenen Kabeln für die Sockel/Potiverdrahtung.
Bevor es damit losgeht kommt jedoch zuerst ...
... die Switches-Buchse
Es sollten jetzt 4 Kabel an der Switches-Buchse liegen:
grün: Schaltmasse Booster
gelb: Schaltmasse Kanalwahl
blau: Schaltmasse FX-Loop deaktivieren
weiß: Versorgung Schaltmasse vom Brückengleichrichter der Heizung (wenn diese Leitung noch nicht liegt kann man sie auch jetzt noch verlegen, ist eben ein wenig mehr Pfriemelei)
Wichtig ist zu beachten, dass das Niveau der Schaltspannung bei ca. 50V liegt, da je die hochgelegte Heizung angezapft wird. Also auf keinen Fall Masse verwenden, sonst sind die Relais und AQYs sofort durchgebrannt!
Bevor die AQYs eingesetzt werden schaltet man zuerst einmal das Netzteil ein (Nur Power auf an, Work bleibt aus) und misst die Spannungen.
Ohne Röhren sollten jetzt am Rel7 zwischen Pin 1 und Pin 2 8V anliegen, an Rel 6 (Pin1/Pin2) 0V. An der Switches-Buchse steckt man nun eine Brücke zwischen weiß und gelb. Die Spannungen sollten am Rel6 nun 0V, am Rel 7 8V betragen. Danach testet man alle Relais durch, ob sie schalten.
Erst jetzt werden die AQYs eingelötet (siehe Bild Einbau_Pre_AQY.jpg) und anschließend nochmals vermessen. Zwischen Pin1 und Pin2 dürfen jetzte bei angelegter
Spannung ca. 1,15V abfallen.
Viele Grüße,
Marc
Bitte stellt Fragen und Antworten in "Müller Classic: Das Konzept"
mac-alex_2003:
Korrektur des Treble-Kondensator
Beim Treble-Kondensator hat sich leider ein kleiner Fehler eingeschlichen, er sitzt verdreht auf dem Board drauf.
Der Abgriff gehört natürlich nicht hinter den Slope-R, sondern davor. Der Kondensator muss nur um 90° verdreht reingesetzt werden, dann stimmts. Am Layout ändert sich jedoch nichts.
Anbei noch das Foto der umgebauten Cs. Die Schaltpläne sind jedoch korrekt.
Vielen Dank für den Tipp, da hatte sich wohl der Fehlerteufel angeschlichen. Ein Glück, dass ich den Amp nicht nur in 24 Tage baue ;D
Viele Grüße,
Marc
mac-alex_2003:
Verdrahtung der Sockel
Hier gibt es ein Punkte zu beachten.
Booster
Es hat sich bei der Inbetriebnahme gezeigt, dass die Leitung vom Gain-Poti des Boosters zum Sockel recht empfindlich ist und unbedingt geschirmt sein muss. Der 150k Gitterwiderstand von V1B ist daher jetzt direkt am Sockel angebracht.
Die Leitungen zum Volumepoti des Boosters sind dagegen unkritisch. Die Mute-Leitung von V3A hingegen bringt geschirmt keinerlei Vorteile mehr.
JMP
An den Sockel von V2 geht an beide Gitter der selbe Eingang, entweder vom Booster oder von der Input-Buchse.
An beide Pins kommt daher ein 33k-Widerstand, die geschirmte Leitung geht jedoch nur an das Gitter von V2B, da dies die Stufe mit mehr Verzerrung ist. Von dort geht eine kurze ungeschirmte Leitung an V2A.
JCM
Der JCM-Kanal hat in der ursprünglich geplanten Bauweise viel zu viel Gain gehabt. Direkt am Gainpoti habe ich daher einen 470k-Widerstand als Spannungsteiler mit dem Poti eingebaut. Den originalen 470pF habe ich weggelassen, da dieser viel zu viel Höhen bringt. Ebenfalls nicht verbaut ist der 1nF über dem Gain-Poti des Originals. Mir gefällt es einfach nicht, wenn der Sound beim Runterregeln so dünn wird.
Die Treble-Schaltung hat im Orignal einen 100k hinter dem Treble-Poti. Diesen sollte man auf 330-560k erhöhen.
Anschließend werden die beiden Preamp- und Netzteil-Boards mit dem kurzen roten Kabel verbunden.
Endstufe
Hier müssen nur noch die beiden Gitterleitungen verlegt werden.
Inbetriebnahme
Nachdem das Netzteil ja bereits geprüft wurde, werden jetzt die Verbindungen der Anodenleitungen mit dem Netzteilboard geprüft. Diese sollten je nach Sockel zwischen 10k und 20k liegen. Ebenfalls getestet wird ein mögliche Kurzschluss von B+ gegen das Chassis und nochmals die Verbindung Masse der Inputbuchse gegen Schutzerde an der Netzbuchse. Das ist schließlich unsere Lebensversicherung.
Ist das alles in Ordnung wird das erste mal noch ohne Röhren angeschalten und die Spannungen vermessen. Sämtliche Anoden-Pins sollten bei ca. 500V liegen, die Gitter bei 0V, die Heizung bei ca. 6,5V (DC-Heizung bis zu 8V im Leerlauf)
Anschließend werden die Röhren (hier verwende ich immer alte Teströhren) reingesteckt und nach kurzer Aufheizphase die Spannungen nochmals gemessen. Ein genaues Spannungschart reiche ich noch nach.
Fängt es sofort an zu Fiepsen, wenn man den Master hochdreht, so müssen die Primätleitungen des AÜs getauscht werden. Danach kann man sie auch entsprechend kürzen.
Rückkopplungen
Der Bereich des Boosters ist sehr empfindlich für Rückkopplungen, da dort die Sekundärleitungen des AÜs direkt darunter verlaufen. Hier hilft ein geerdetes Weißblech sehr gut als Abschirmung. Weitere Schirmungen waren lediglich bei den Leitungen zum Masterregler notwendig.
Boosteroptimierung
Der Booster hatte noch etwas zuviel Gain, was für Rückkopplungen nicht gerade förderlich ist und irgendwann auch matscht. Macht man ihn zu zahm bringt es aber auch nichts. Ich habe mich daher dafür entschieden, das Signal vor V1B mit 100k gegen Masse zu ziehen und dafür den 27k am Volumepoti gegen 56k zu tauschen. So bringt er weniger Gain aber mehr Volume. Man kann so zwar den Amp immernoch zum Matschen und irgendwann bei Taubstummenlautstärke zum internen Koppeln bekommen, wenn man alle Gainregler auf Anschlag dreht, hat aber eben die Möglichkeit den Channel-Gain niedrig zu halten und dafür den Booster weiter aufzudrehen. Alles andere wäre imho eine Kastrierung gewesen.
Optimierung Switches
Bisher ist das Niveau der Relais-Masse auf Uref = 45V gelegt. Dies kann zu einem Kurzschluss führen, wenn man einen Klinkenstecker mit Metallgehäuse an den Switches-Adapter anschließt und hiermit ans Chassis kommt. Ich habe daher die Relais von der DC-Heizung weggehängt an die Endstufenheizung. Um dort einen Gleichstrom zu bekommen muss der CT der Trafowicklung von der Masse entfernt werden. Eine Seite der Wicklung wird hierfür an Masse gelegt, der Schwingungsmittelpunkt liegt somit bei 3,15V. Auf der Plusseite wird ausgehend vom Pilotlight eine Leitung zum Netzteil gelegt mit einer zusätzlichen Diode und einem 4700µF Elko. Bei der benötigten Stromstärke von ca. 50-100mA bringt das eine ausreichend glatte Gleichspannung. Ein Brumm entsteht hierdurch nicht.
Ein paar Anmerlungen zu Heater Elevation und DC-Heizung
Ein Referenzierung der Heizspannung auf Masse bringt einen deutlichen Brumm zutage. Das Hochlegen auf ca. 45V dagegen absolute Ruhe!
Eine komplette DC-Heizung dagegen ist mit dieser ungeregelten Version nicht machbar, hier gehen die Elkos zu stark in die Knie. Das brummt unterm Strich noch deutlich mehr, wenn nicht massiv mehr Kapazität verbaut wird. Für eine komplette DC-Heizung würde ich weiterhin DC/DC-Regler vorziehen.
Und noch ein paar Anmerkungen zur Sternmasse
Am Anfang des Konzept-Threads haben wir öfters über die Masseführung diskutiert und ich war mir auch nicht 100%sicher, dass dies ohne Probleme klappt. Ergebnis: Ich hatte noch nie einen so ruhigen und völlig problemlosen Amp, was die Masseführung betrifft. Es ist auch beim Gain zu/Master voll auf kein wirkliches Brummen zu hören.
Das Konzept der Stufenmassen in Verbindung mit der Rückführung zur Sternmasse übers Chassis ist daher absolut aufgegangen und kann ich nur weiterempfehlen.
Und nun?
... häng ich noch ein paar Bilder ran. Das große Foto mit dem Parkettboden als Hintergrund zeigt den letztendlichen Stand. Die erste Probe hat er mit Bravour bestanden, jetzt muss er nur noch eingespielt werden und das Headshell wartet auch schon auf Vollendung. Es hat sich auch bei diesem Amp gezeigt, dass eine ordentliche Planung und am Anfang viel Hirnschmal reinzustecken die Probleme am Schluss in einem verdrehtbaren Rahmen hält. Bis auf ein paar kleine Abstimmungen hat der Rest auf Anhieb gesessen, wobei ich die wesentlichen Schaltungsteile ja bereits im voraus getestet habe. Der 3/100, der ja wirklich fast vom Zeichenblatt aus entstanden ist, hat an dieser Stelle deutlich mehr Arbeit verursacht, ist mit seinem vielen Boards aber auch um Welten komplexer aufzubauen.
... Morgen kommt dann mein schneeweißes Tolex ...
(und später vielleicht noch der Beitrag übers Headshell-Bauen).
Viele Grüße,
Marc
mac-alex_2003:
Hier das erste Bild mit hoher Auflösung.
Navigation
[0] Themen-Index
[#] Nächste Seite
[*] Vorherige Sete
Zur normalen Ansicht wechseln