Technik > Tech-Talk Amps

Dioden für Leerlauffestigkeit!?

<< < (3/9) > >>

the_moppi:
hi, nein. 3 dioden in reihe vertrage 3KV, da sich die spannung über den einzelnen dioden aufteilt (wie bei der reihenschaltung 2er Kondensatoren)

Mfg Marek

Bierschinken:
Hallo Marek,

genau das denke ich eben nicht!
Damit das mit den Kondensatoren funktioniert, müssen sie mithilfe von Widerständen auf definierte Potentiale gelegt werden.
Sonst kann es passieren, dass über dem ersten Kondensator deutlich mehr Spannung abfällt als über dem zweiten und er infolge dessen über die Wupper geht.
Ich denke dass es ebenso für den Spannungsabfall er Dioden gilt.

Grüße,
Swen

the_moppi:
hi

allerdings funktioniert das bei kondensatoren auch ohne diese widerstände! wenn du zb. 2 Z-dioden hintereinander schaltest, und sie beide zB 5,6V haben, wirst du über beide ein V von 11,2V messen und über jede einzelne 5,6V.

sonnst hätte es keinen sinn in manchen amps mit mittelpunktgleichrichtung 2 dioden hintereinander zu schalten. diese schaltung ist auch dazu da, die spannungsfestigkeit zu verdoppeln. zb bei amps mit über 500V im leerlauf.

ich müsste mal in meinen elektronik hefter schauen, da müsste es irgendwo drinne stehen. :P

Mfg Marek

OneStone:
Warum das funktioniert ist eigentlich ganz einfach, aber man sollte eines beachten:

Ua kann bei einem Gegentaktverstärker maximal 2x Ub werden, wenn der Ausgangsübertrager korrekt abgeschlossen ist.

Wäre Ua > 2*Ub, so wäre die Anodenspannung an der gegenüberliegenden Anode durch die induktive Verkopplung der Anodenwicklungen negativ, und das ist per Definition nicht möglich, da die Röhre nur bis Ua = 0V (Kathodenpotential) durchschalten kann, wenn man vereinfacht eine Röhre annimmt, die vollständig leitend werden kann.

Außerdem wird der Zustand Ua < 0V (bzw genauer: Ua < - (n*Uf), wobei Uf die Flussspannung der Dioden und n die Anzahl pro Anodenwicklung sind, aber das kann man vernachlässigen, daher Ua < 0V) durch die Dioden ja schon verhindert. Das heißt, Ua > 2*Ub ist doppelt unmöglich :D

=> Für die Anodenspannung muss gelten: 0V <= Ua <= 2*Ub

Daraus kann man auch schnell erschließen, dass die Dioden an den Anoden die zweifache Betriebsspannung der Endstufe sperren können müssen. Bei 2x 1N4007 wäre man da bei 2kV, d.h. Ua dürfte bis 1kV gehen. Fährt man seinen Amp mit Ub=550V, dann ist bei Vollaussteuerung mit einer idealen, voll durchschaltenden Röhre (Ri = 0) ja Uap=1100V. Das wird man in der Praxis nie erreichen (Anodenrestspannung, wenn die voll durchgesteuert ist, ist ja nicht 0V). Aber unabhängig davon: Jeder Zustand mit Ua > 1100V wäre Leerlauf und somit eben ein "falscher" Betriebszustand, der durch die Dioden verhindert wird.
2x 1N4007 reichen somit für eine Endstufe mit EL34, deren Anodenspannung unter 1kV liegt, sicher. Das Problem ist allerdings dann noch ein anderes: die angesprochene Sperrspannungsaufteilung.

Man kann nicht sagen, dass bei 2kV jede Diode 1kV sperren muss, weil diese Spannungsaufteilung durch die inneren Kapazitäten der Dioden in Verbindung mit der Wechselspannung, die an den Dioden anliegt, definiert wird. Das heißt, man hat hier einen kapazitiven Spannungsteiler, der von der Sperrschichtkapazität der Dioden abhängig ist, und diese unterliegt Fertigungstoleranzen. Das heißt, dass eine Reihenschaltung von zwei 1N4007 auch schon bei 1,5kV durchschlagen kann, wenns ganz blöd kommt. Man muss hier mit Widerständen oder Kondensatoren symmetrieren, sodass diese ungleiche Spannungsverteilung gar nicht erst auftreten kann. Bei Widerständen ist die Funktion klar: Die Widerstände müssen klein gegenüber dem kapazitiven Blindwiderstand der Dioden-Sperrschichtkapazität bei den relevanten Frequenzen sein. Widerstände sind aber suboptimal, da an ihnen dauerhaft Verlustleistung auftreten würde - und man darf nicht vergessen, dass diese Widerstände direkt zwischen Anode (Ua kann bis 2xUb gehen!) und Masse hängen, d.h. man bräuchte Leistungswiderstände, die die Spannung aushalten. Mit Kondensatoren kann man das besser machen, einfach einige nF (verbreitet sind 10n-22n) parallel zu den Dioden und fertig, dann wird die Spannung durch die Kondensatorkapazitäten gleichmäßig aufgeteilt und die Sperrschichtkapazität wird irrelevant.
Am einfachsten ist es aber, und daher macht man das ja auch, einfach mehrere Dioden zu benutzen. Bei 3 Dioden hätte man eine Spitzensperrspannung von 3kV und das ist so ordentlich überdimensioniert, dass da nie was durchschlagen wird, weil die Fertigungstoleranzen der Dioden dazu zu klein sind.

Ich habe allerdings bei meinen Testmessungen keine Probleme gehabt, dass 2x 1N4007 an 550V Ub durchgeschlagen hätten...das geht offensichtlich auch ohne Probleme.

Der Vergleich mit den Z-Dioden hinkt, da diese im Durchbruchsbereich (Sperrrichtung!) betrieben werden, d.h. die MÜSSEN durchbrechen. Wenn eine durchgebrochen ist, dann macht die andere, die in Reihe geschalten ist, das natürlich auch, da die Spannung an ihr steigt. Aber die 1N4007 hier sollen ja gerade nicht durchbrechen, weil das ziemlich scheppern würde.

Zum Strom was: Die Zustandsgröße bei einer Induktivität ist der Strom. Ein Kondensator speichert Spannung, eine Induktivität "speichert" Strom. Bei der Selbstinduktion will der letzte Strom, der bis zum Zeitpunkt des Eintretens der Selbstinduktion geflossen ist, weiterfließen.
Das heißt, dass der Induktionsstrom bei einer normalen EL34-Endstufe nie über 1A liegen kann. Von daher sind 1N4007 absolut ausreichend (eher noch überdimensioniert). Dazu muss man auch sehen, dass die 1N4007 einen Spitzenstrom von um die 50A (ausm Kopf jetzt) aushält, und der Induktionsstrom da ist ja nur eine kurze Spitze.

=> 1N4007 rein und fertig. Hilft - außer wenn der Amp sehr hochfrequent schwingt, da sind die Dioden zu langsam. Aber das können die meisten Ausgangsübertrager sowieso nicht :D

MfG Stephan

Han die Blume:
DANKE, Stephan!

Das habe ich verstanden, das hast Du sehr gut erklärt! Ich finds sehr bereichernd, dass Du in der letzten Zeit hier öfters auftauchst. - Kommt mir entgegen, weil ich gerade in der Theorie so einige Lücken habe!  :danke:

Kai

Navigation

[0] Themen-Index

[#] Nächste Seite

[*] Vorherige Sete

Zur normalen Ansicht wechseln